位置:成果数据库 > 期刊 > 期刊详情页
基于SVR和PCA的超分辨率图像恢复算法应用研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]黔南民族师范学院数学系,贵州都匀558000
  • 相关基金:贵州省自然科学基金资助项目(黔教科2009064); 黔南民族师范学院科研项目(qnsy201001)
中文摘要:

利用单幅低分辨率图像重构超分辨率图像的算法中,通常基于样本库进行图像重构,而这类算法效率较低。提出了一种利用SVR和PCA进行特征压缩的图像重构算法,其基本思路是将训练图像分解成若干个基本小块作为样本库;然后利用PCA对低分辨率图像基本小块进行降维处理,并将得到的主成分系数作为特征加以训练,在识别和重构过程中,将待恢复图像进行回归分析,找到相应的超分辨率图像块,然后进行重构。实验结果表明,本文方法较其他算法有更优的恢复结果,并能同时保证较好的实时处理特性,很好地逼近了原始的真实图像。

英文摘要:

Using a single low resolution image to reconstruct a super-resolution image,usually based on the sample image reconstruction,but this kind of algorithm efficiency is low.This paper presented a SVR and PCA based image restoration method.Firstly,it decomposed the low resolution images into several small pieces and projected these samples onto a smaller space.Then trained the SVR using these samples and their corresponding high resolution patches.During the restoration procedure,it decomposed the test image in the same way and project using trained PCA model.After SVR,mapped each low resolution patch to a high resolution patch which was used to restore the final image.The experiments show that the method can achieve better performance than cubic interpolation method and also has very high computational efficiency.

同期刊论文项目
期刊论文 25
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049