位置:成果数据库 > 期刊 > 期刊详情页
基于自然选择策略的蚁群算法求解TSP问题
  • ISSN号:1000-436X
  • 期刊名称:《通信学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]上海海事大学商船学院,上海201306, [2]上海海事大学信息工程学院,上海201306
  • 相关基金:国家自然科学基金资助项目(51279099)上海市科学技术委员会基金资助项目(12ZR1412500);上海市教委科研创新基金资助项目(13ZZ124);上海市教育委员会和上海市教育发展基金会“曙光计划”基金资助项(12SG40)
中文摘要:

针对蚁群算法收敛速度慢,容易陷入局部最优解的缺陷,提出了一种基于自然选择策略的改进型蚁群算法,改进后的算法利用自然选择中“优胜劣汰”的进化策略,对每次迭代的随机进化因子大于进化漂变阈值的路径信息素进行二次更新,增强满足进化策略路径上的信息素浓度,以加快算法的收敛速度;而随机进化因子的随机性增强了算法跳出局部最优解的概率。将提出的改进型蚁群算法求解经典的TSP问题,并通过实验证明了改进后的蚁群算法在最优解精度和收敛速度等方面均有所提高。

英文摘要:

To solve basic ant colony algorithm's drawbacks of low convergence rate, easiness of trapping in local optimal solution, an improved ant colony algorithm based on natural selection was proposed. The improved algorithm employed evolution strategy of survival the fittest in natural selection to enhance pheromones in paths whose random evolution factor was bigger than threshold of evolution drift factor in each process of iteration. It could accelerate convergence rate effectively. Besides the introduction of random evolution factor reduced probability of trapping local optimal solution notably. The proposed algorithm was applied to classic TSP problem to find better solution for TSP. Simulation results depict the improved algorithm has better optimal solution and higher convergence rate.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《通信学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会
  • 主编:杨义先
  • 地址:北京市丰台区成寿寺4路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:
  • 电话:010-81055478 81055481
  • 国际标准刊号:ISSN:1000-436X
  • 国内统一刊号:ISSN:11-2102/TN
  • 邮发代号:2-676
  • 获奖情况:
  • 信息产业部通信科技期刊优秀期刊二等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:25019