利用幂等矩阵的性质及两个幂等矩阵的和与差的可逆性,研究了两个幂等矩阵P,Q在条件(PQ)^2=PQ下,它们的组合T=aP+bQ+cPQ+dQP+ePQP+fQPQ+g(QP)2,(a,b,c,d,e,f,g∈C,ab≠0)的可逆性,并给出它的求逆公式.
By using the nonsingularity of difference and sum of two idempotent matricesP.Q, we study the invertibility of the combinationT=aP+bQ+cPQ+dQP+ePQP+fQPQ+g(QP)2,(a,b,c,d,e,f,g∈C,ab≠0) under the condition of (PQ)^2 = PQ. Furthermore, the expression of its inverse is provided in this paper.