Nanomaterials 与强烈在红外线附近(NIR ) 吸收展览有效 photon-to-thermal 精力转移能力和罐头产生热切除癌症房间,因此在 photothermal 癌症治疗学起一个枢轴的作用。此处,吸水的象花的铋硫(双性人 2 有一致尺寸的 S 3) 上层建筑和改进 NIR 吸收 controllably 经由 polyvinylpyrrolidone (PVP ) 帮助的一个灵巧的 solvothermal 过程被综合,它能调整产品形态学。由 808-nm 激光导致了,同样准备的双性人 2 S 3 nanoflowers 比双性人 2 当 PVP 不在时准备的 S 3 nanobelts (36.5%) 。这能被归因于双性人 2 与一个更低的乐队一起与 NIR 光而且到非结晶的结构的改进反射率和吸收用作许多激光洞镜子的 3-dimensional crumpled-paper-like nanosheets 装配的 S 3 nanoflower 上层建筑豁开。因此,当使用双性人 2 与相比的 S 3 nanoflowers 用双性人 2 S 3 nanobelts,它由于减少的毒性在治疗为使用使他们更有利。而且,这些双性人 2 S 3 nanoflowers 有效地在 vitro 并且在 vivo 完成了癌症房间的 photothermal 脱离。这些结果不仅支持了双性人 2 是的 S 3 nanoflowers 为癌症治疗的一个有希望的 photothermal 代理人而且铺了一条途径与改进 photothermal 效率利用新代理人。
Nanomaterials with intense near-infrared (NIR) absorption exhibit effective photon-to-thermal energy transfer capabilities and can generate heat to ablate cancer cells, thus playing a pivotal role in photothermal cancer therapeutics. Herein, hydrophilic flower-like bismuth sulfur (Bi2S3) superstructures with uniform size and improved NIR absorption were controllably synthesized via a facile solvothermal procedure assisted by polyvinylpyrrolidone (PVP), which could adjust the product morphology. Induced by an 808-nm laser, the as-prepared Bi2S3 nanoflowers exhibited much higher photothermal conversion efficiency (64.3%) than that of Bi2S3 nanobelts (36.5%) prepared in the absence of PVP. This can be attributed not only to the Bi2S3 nanoflower superstructures assembled by 3-dimensional crumpled-paper-like nanosheets serving as many laser-cavity mirrors with improved reflectivity and absorption of NIR light but also to the amorphous structures with a lower band gap. Thus, to achieve the same temperature increase, the concentration or laser power density could be greatly reduced when using Bi2S3 nanoflowers compared to when using Bi2S3 nanobelts, which makes them more favorable for use in therapy due to decreased toxicity. Furthermore, these Bi2S3 nanoflowers effectively achieved photothermal ablation of cancer ceils in vitro and in vivo. These results not only supported the Bi2S3 nanoflowers as a promising photothermal agent for cancer therapy but also paved an approach to exploit new agents with improved photothermal efficiency.