位置:成果数据库 > 期刊 > 期刊详情页
Efficiently Counting Affine Roots of Mixed Trigonometric Polynomial Systems
  • ISSN号:1009-6124
  • 期刊名称:《系统科学与复杂性学报:英文版》
  • 时间:0
  • 分类:O175.12[理学—数学;理学—基础数学] TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]School of Science, Dalian University of Technology Panjin Campus, Panjin 124221, China, [2]School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
  • 相关基金:This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 11101067 and 11571061, Major Research Plan of the National Natural Science Foundation of China under Grant No. 91230103 and the Fundamental Research Funds for the Central Universities.
中文摘要:

估计一个多项式系统的孤立的根的数字是在代数学的几何学而且为解决多项式系统的 homotopy 方法的重要 subproblem 的一个基本学习主题不仅。为混合三角法的多项式系统,哪个比多项式系统并且相当经常更一般发生在许多应用程序,古典 B 潯 ? 慦瑩吗?

英文摘要:

Estimating the number of isolated roots of a polynomial system is not only a fundamental study theme in algebraic geometry but also an important subproblem of homotopy methods for solving polynomial systems. For the mixed trigonometric polynomial systems, which are more general than polynomial systems and rather frequently occur in many applications, the classical B6zout number and the multihomogeneous Bezout number are the best known upper bounds on the number of isolated roots. However, for the deficient mixed trigonometric polynomial systems, these two upper bounds are far greater than the actual number of isolated roots. The BKK bound is known as the most accurate upper bound on the number of isolated roots of a polynomial system. However, the extension of the definition of the BKK bound allowing it to treat mixed trigonometric polynomial systems is very difficult due to the existence of sine and cosine functions. In this paper, two new upper bounds on the number of isolated roots of a mixed trigonometric polynomial system are defined and the corresponding efficient algorithms for calculating them are presented. Numerical tests are also given to show the accuracy of these two definitions, and numerically prove they can provide tighter upper bounds on the number of isolated roots of a mixed trigonometric polynomial system than the existing upper bounds, and also the authors compare the computational time for calculating these two upper bounds.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统科学与复杂性学报:英文版》
  • 主管单位:中国科学院
  • 主办单位:中国科学院系统科学研究所
  • 主编:
  • 地址:北京东黄城根北街16号
  • 邮编:100080
  • 邮箱:
  • 电话:010-62541831 62541834
  • 国际标准刊号:ISSN:1009-6124
  • 国内统一刊号:ISSN:11-4543/O1
  • 邮发代号:82-545
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:125