位置:成果数据库 > 期刊 > 期刊详情页
基于多源遥感数据的大豆叶面积指数估测精度对比
  • ISSN号:1001-9332
  • 期刊名称:《应用生态学报》
  • 时间:0
  • 分类:TP320[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南理工大学测绘与国土信息工程学院,河南焦作454000, [2]国家农业信息化工程技术研究中心,北京100097, [3]农业部农业信息技术重点实验室,北京100097
  • 相关基金:国家自然科学基金项目(41271345); 北京市自然科学基金项目(4141001)资助。
中文摘要:

近年来遥感技术的革新促使遥感源越来越丰富.为分析多源遥感数据的叶面积指数(LAI)估测精度,本文以大豆为研究对象,利用比值植被指数(RVI)、归一化植被指数(NDVI)、土壤调整植被指数(SAVI)、差值植被指数(DVI)、三角植被指数(TVI)5种植被指数,结合地面实测LAI构建经验回归模型,比较3类遥感数据(地面高光谱数据、无人机多光谱影像以及高分一号WFV影像)对大豆LAI的估测能力,并从传感器几何位置和光谱响应特性以及像元空间分辨率三方面分析讨论了3类遥感数据的LAI反演差异.结果表明:地面高光谱数据模型和无人机多光谱数据模型都可以准确预测大豆LAI(在α=0.01显著水平下,R^2均〉0.69,RMSE均〈0.40);地面高光谱RVI对数模型的LAI预测能力优于无人机多光谱NDVI线性模型,但两者差异不大(EA相差0.3%,R^2相差0.04,RMSE相差0.006);高分一号WFV数据模型对研究区内大豆LAI的预测效果不理想(R^2〈0.30,RMSE〉0.70).针对星、机、地三类遥感信息源,地面高光谱数据在反演LAI方面较传统多光谱数据有优势但不突出;16 m空间分辨率的高分一号WFV影像无法满足田块尺度作物长势监测的需求;在保证获得高精度大豆LAI预测值和高工作效率的前提条件下,基于无人机遥感的农情信息获取技术不失为一种最佳试验方案.在当今可用遥感信息源越来越多的情况下,农业无人机遥感信息可成为指导田块精细尺度作物管理的重要依据,为精准农业研究提供更科学准确的信息.

英文摘要:

With the innovation of remote sensing technology,remote sensing data sources are more and more abundant. The main aim of this study was to analyze retrieval accuracy of soybean leaf area index( LAI) based on multi-source remote sensing data including ground hyperspectral,unmanned aerial vehicle( UAV) multispectral and the Gaofen-1( GF-1) WFV data. Ratio vegetation index( RVI),normalized difference vegetation index( NDVI),soil-adjusted vegetation index( SAVI),difference vegetation index( DVI),and triangle vegetation index( TVI) were used to establish LAI retrieval models,respectively. The models with the highest calibration accuracy were used in the validation. The capability of these three kinds of remote sensing data for LAI retrieval was assessed according to the estimation accuracy of models. The experimental results showed that the models based on the ground hyperspectral and UAV multispectral data got better estimation accuracy(R^2 was more than 0.69 and RMSE was less than 0.4 at 0.01 significance level),compared with the model based on WFV data. The RVI logarithmic model based on ground hyperspectral data was little superior to the NDVI linear model based on UAV multispectral data( The difference in EA,R^2 and RMSE were 0.3%,0.04 and 0.006,respectively). The models based on WFV data got the lowest estimation accuracy with R^2 less than 0.30 and RMSE more than 0.70. The effects of sensor spectral response characteristics,sensor geometric location and spatial resolution on the soybean LAI retrieval were discussed. The results demonstrated that ground hyperspectral data were advantageous but not prominent over traditional multispectral data in soybean LAI retrieval. WFV imagery with 16 m spatial resolution could not meet the requirements of crop growth monitoring at field scale.Under the condition of ensuring the high precision in retrieving soybean LAI and working efficiently,the approach to acquiring agricultural information by UAV remote sensing could yet be regarded

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用生态学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国生态学学会 中国科学院沈阳应用生态研究所
  • 主编:沈善敏
  • 地址:沈阳市文化路72号
  • 邮编:110016
  • 邮箱:
  • 电话:024-83970393
  • 国际标准刊号:ISSN:1001-9332
  • 国内统一刊号:ISSN:21-1253/Q
  • 邮发代号:8-98
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学院优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,美国生物医学检索系统,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:98742