最大间距准则(Maximum Margin Criterion,MMC)能够有效地克服线性鉴别分析(Linear Discriminant Analysis,LDA)算法所面临的小样本问题。但是,原有的 MMC 求解算法复杂度较高,为了提高 MMC 算法的计算效率,本文提出了一种新的快速的 MMC 求解算法。在理论上,新的 MMC 求解算法和原有算法等价,但计算复杂度比原算法要低的多。在人脸库上的实验表明,新的 MMC 求解算法的计算速度远比现有的 MMC求解算法要快,但是其识别率与现有求解算法相同。
Maximum margin criterion (MMC)can address the small sample size problem encountered by linear discriminant analysis (LDA).However,the existing scheme for MMC is computationally expen-sive.In order to improve the efficiency of MMC,a new and fast scheme for MMC is proposed.The pro-posed scheme for MMC,much faster than the original one,is theoretical equivalent to the existing scheme for MMC.Experiments on face databases demonstrate that the new scheme for MMC is much more efficient than the existing schemes for MMC,but the recognition rates of the new scheme and the existing one for MMC are the same.