可吸入颗粒物是一种重要的大气污染物,其对人类健康和大气环境带来极大危害。在当前以燃用化石燃料为主的能源结构和与日俱增的能源消耗形势下,燃烧源的排放成为可吸入颗粒物的一个重要来源,主要原因是目前电站及工业生产中的除尘设备,如电除尘器、过滤除尘器等虽然已达到很高的水平,但对可吸入颗粒物的脱除效率却较低,使得大量颗粒排放到大气中。
The efficiency of removing inhalable particles in a conventional spray scrubber was examined by the theory of wetting dust removal,and condensation growth properties of inhalable particles in the supersaturated vapor environments were investigated using a condensation growth dynamic model.The results show that the removal efficiency of inhalable particles is only 16% for the conventional spray scrubber,and vapor condensation is able to cause the submicron particles to grow rapidly into big dusty droplets in very short time.For case with vapor saturation of 1.3 and particle number concentration of 105 cm-3,the fine particles with diameter less than 0.5 μm can shoot to around 0.8 μm in 50 ms.The final diameters of condensation droplets are little affected by the initial particle diameter,but depend mainly on initial vapor saturation and particle number concentration.It is found that the final droplet diameter increases with increase of saturation degree of vapor,while it decreases with increase of particle number concentration.These results could be used as a theoretical basis and technical guidance for practical application of vapor heterogeneous condensation to promote condensation growth and effective removal of inhalable particles.