位置:成果数据库 > 期刊 > 期刊详情页
一种播存网络环境下的UCL协同过滤推荐方法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TN92[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]东南大学计算机科学与工程学院,南京211189, [2]东南大学计算机网络和信息集成教育部重点实验室,南京211189
  • 相关基金:The National High Technology Research and Development Program of China(863 Program)(No.2013AA013503); the National Natural Science Foundation of China(No.61472080;61370206;61300200); the Consulting Project of Chinese Academy of Engineering(No.2015-XY-04); the Foundation of Collaborative Innovation Center of Novel Software Technology and Industrialization
中文摘要:

为了提高用户之间相似度度量的性能,充分利用用户的社会信息,提出一种考虑潜在用户分组信息的相似度度量方法.该方法首先为用户的分类属性建立权值分类树,并基于此分类树,采用统一框架计算用户分类信息和数值信息的距离;然后利用该距离改进k-means聚类方法,以计算用户的潜在用户分组;最后结合用户分组信息改进传统相似度度量方法.基于真实数据集Movie Lens进行实验,并与其他传统方法对比,结果表明,与传统方法相比,所提方法提高了协同过滤中的预测精度.

英文摘要:

To improve the similarity measurement between users, a similarity measurement approach incorporating clusters of intrinsic user groups( SMCUG) is proposed considering the social information of users. The approach constructs the taxonomy trees for each categorical attribute of users. Based on the taxonomy trees, the distance between numerical and categorical attributes is computed in a unified framework via a proper weight. Then, using the proposed distance method, the nave k-means cluster method is modified to compute the intrinsic user groups. Finally, the user group information is incorporated to improve the performance of traditional similarity measurement. A series of experiments are performed on a real world dataset, M ovie Lens. Results demonstrate that the proposed approach considerably outperforms the traditional approaches in the prediction accuracy in collaborative filtering.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349