位置:成果数据库 > 期刊 > 期刊详情页
基于网络和标签的混合推荐算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]广东外语外贸大学思科信息学院,广州510006
  • 相关基金:国家自然科学基金(No.61070061,No.61402119);国家社会科学基金(No.13CGL130);教育部人文社会科学研究青年基金(No.13YJCZH258);全国统计科学研究计划项目(No.2012LYl59);广东省高科技发展计划项目(No.20128031400016);广东省高等教育“创新强校工程”(No.GWTP-GC-2014-03).
中文摘要:

基于网络结构的推荐算法利用用户与项目间的结构关系进行推荐,忽略了用户偏好,而项目的标签隐含了项目的内容及用户的偏好,提出一种基于网络结构和标签的混合推荐方法。算法根据用户选择项目的标签统计信息,分别采用TF—IDF和用户对标签的支持度两种方法构建用户偏好模型,与基于网络的推荐模型进行线性组合推荐。通过在基准数据集MovieLens上测试证明,该算法在推荐结果命中率、个性化程度、多样性等方面均优于基于网络的推荐算法。

英文摘要:

The structure between user and item is only considered in the network-based inference algorithm regardless of personalized preferences, collaborative tags contain rich information about personalized preferences and item contents, and then a hybrid recommendation method is proposed based on network and tag. In this paper, personalized preferences is constructed according to the method of TF-IDF and the tag support, and a linear combination of recommendation model is presented by merging network-based inference and personalized preferences. The benchmark data set, MovieLens, is used to evaluate the algorithm. Experimental results demonstrate that the usage of tag information can significantly improve accuracy, diversification and personalized of recommendations.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887