位置:成果数据库 > 期刊 > 期刊详情页
一种多样性引导的两阶段多目标微粒群算法
  • ISSN号:1671-9352
  • 期刊名称:《山东大学学报:理学版》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]山东师范大学信息科学与工程学院,山东济南250014
  • 相关基金:国家自然科学基金资助项目(60743010)
中文摘要:

针对现有多目标微粒群算法存在容易陷于局部极值、收敛速度慢、函数评价次数多等不足,提出了一种多样性引导的2阶段多目标微粒群算法,依据种群多样性动态使用不同的变异方式,采用了2种不同的领导微粒选择方式,基于Pareto占优排序和拥挤距离来控制外部档案中解的数目。针对多个多目标测试函数进行了实验,并与其他文献的方法进行了比较,验证了算法的有效性。

英文摘要:

Multi-objective particle swarm optimizers are often trapped in local optima, converge slowly and cost more function evaluations. Therefore, a diversity-guided two-stage MOPSO (DTSPSO) was proposed. DTSPSO dynamically selects different mutation operators according to current population diversity and divides into two stages according to its ways of selecting leaders. In addition, Pareto dominance ranking and crowding distance were used to fix the size of the external archive. Experiments were carried out on several classical benchmark functions for multi-objective optimization problems and the results show that DTSPSO is effective in solving various multi-objective optimization problems.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《山东大学学报:理学版》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:山东大学
  • 主编:刘建亚
  • 地址:济南市经十路17923号
  • 邮编:250061
  • 邮箱:xblxb@sdu.edu.cn
  • 电话:0531-88396917
  • 国际标准刊号:ISSN:1671-9352
  • 国内统一刊号:ISSN:37-1389/N
  • 邮发代号:24-222
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘
  • 被引量:6243