位置:成果数据库 > 期刊 > 期刊详情页
不含三圈的k圈图的拟拉普拉斯和拉普拉斯谱半径
  • 期刊名称:高校应用数学学报(A)
  • 时间:2014
  • 页码:295-302
  • 分类:O157[理学—数学;理学—基础数学]
  • 作者机构:[1]青海师范大学数学系,青海西宁810008, [2]盐城师范学院数学科学学院,江苏盐城224002
  • 相关基金:国家自然科学基金(11171290)
  • 相关项目:图谱理论及其在多智能体系统中的应用
中文摘要:

k圈图是边数等于顶点数加k-1的简单连通图.文中确定了不含三圈的k圈图的拟拉普拉斯谱半径的上界,并刻画了达到该上界的极图.此外,文中确定了拟拉普拉斯谱半径排在前五位的不含三圈的单圈图,排在前八位的不合三圈的双圈图.最后说明文中所得结论对不含三圈的k圈图的拉普拉斯谱半径也成立.

英文摘要:

A k-cyclic graph is a connected graph in which the number of edges equals the number of vertices plus k + 1. This paper determines the maximal signless Laplacian spectral radius together with the corresponding extremal graph among all triangle-free k-cyclic graphs of order n. Moreover, this paper gives the first five triangle-free unicyclic graphs on n (n ≥ 8) vertices, and the first eight triangle-free bicyclic graphs on n (n 〉 12) vertices according to the signless Laplacian spectral radius. Finally, the authors of this paper show that the results obtained in this paper also hold for Laplacian spectral radius of triangle-free k-cyclic graphs of order n.

同期刊论文项目
同项目期刊论文