主要目的是介绍两个p -调和映射类HSp和HCp及其相应的子类HSp0和HCp0, 同时研究这些类中映射的性质. 首先, 讨论了HSp0和HCp0中映射的几何性质. 证明了在HSp0和HCp0中的映射下, 单位圆盘的像域分别是星形的和凸的. 其次, 确定了HSp0、HCp0、HSp∩Tp和HCp∩Tp的极值点, 其中Tp表示具有非负系数的p -调和映射类. 最后, 证明了HCp中映射邻域的存在性.
In this paper, the main aim is to introduce two classes HSp and HCp of p-harmonic mappings together with their corresponding subclasses HSp0 and HCp0, and investigate the properties of the mappings in these classes. First, we discuss the geometric properties of mappings belonging to HSp0 and HCp0, respectively. We prove that the image domains of the unit disk D under the mappings in HSp0 (resp. HCp0) are starlike (resp. convex). Secondly, extreme points for classes HSp0, HCp0, HSp∩Tp and HCp∩Tp are determined, where Tp denotes the set of all p-harmonic mappings with nonnegative coefficients. Finally, we establish the existence of the neighborhoods of mappings in HCp.