位置:成果数据库 > 期刊 > 期刊详情页
正则区域的对数导数单叶性内径
  • ISSN号:1000-5862
  • 期刊名称:《江西师范大学学报:自然科学版》
  • 时间:0
  • 分类:O174.51[理学—数学;理学—基础数学]
  • 作者机构:[1]江西师范大学数学与信息科学学院,江西南昌330022
  • 相关基金:国家自然科学基金(11071063,11261022); 江西省教育厅科研课题(GJJ12175)资助项目
中文摘要:

研究了单位圆到正则区域的共形映射的对数导数,讨论了对数导数范数的一些性质,得到了带凸角的正则区域在对数导数意义下的单叶性内径的一个下界估计,并推导出椭圆内部区域的对数导数意义下的单叶性内径为1.

英文摘要:

Making use of integral representation of a conformal map from the unit disk onto a regula pre-Schwarzian derivative of the conformal map is discussed. A new estimation of lower bound of the univalence by pre-Schwarzian derivative of a regulated domain with convex corners is obtained.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《江西师范大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:江西师范大学
  • 主办单位:江西师范大学
  • 主编:
  • 地址:南昌市紫阳大道99号
  • 邮编:330022
  • 邮箱:lk8506184@126.com
  • 电话:0791-88506814
  • 国际标准刊号:ISSN:1000-5862
  • 国内统一刊号:ISSN:36-1092/N
  • 邮发代号:44-56
  • 获奖情况:
  • 2009年中国高等学校自然科学学报研究会颁发“全国...,2009年被评为:第四届华东地区优秀期刊奖”,2008年教育部科技司授予“第2届中国高校优秀科技...,2008年江西省新闻出版局授予“第3届江西省优秀期...,2004年教育部科技司授予“全国高校优秀科技期刊二...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:5205