利用分子动力学方法,结合钨合金的嵌入原子势,研究了在高速冲击载荷下钨合金的熔化行为。首先,建立了钨合金的冲击模型,采用相同的冲击加载速度,分别对钨(100)、(110)和(111)晶面进行冲击数值模拟,得到Hugoniot关系、压力、温度、体积和波后粒子速度等相关数据及曲线,通过对数据和曲线的分析可知,冲击压力与冲击温度成正比例关系,冲击压力与冲击体积成反比例关系。计算结果在低速冲击过程中与实验数据比较吻合,从而进一步将其拓展到高速冲击领域,计算结果可以定性地说明钨合金在高速冲击下的塑性性质。
The tungsten alloy melting behaviors under high-velocity shock loading is investigated by Molecular Dynamic (MD) method combined with Embedded Atom Method (EAM) potential of tung- sten alloy. First, the shock model of tungsten alloy is set up and the numerical simulations of lattice planes (100), (110), (111) under the shock loadings with the same velocity are conducted respective- ly. The Hugoniot curve and the relative data of pressure,temperature,volume and particle velocity be- hind the shock wave are obtained. Based on the analyses of the data and the curve, it is found that the shock pressure is in proportion to the shock temperature and inversely proportional to the shock vol- ume. The above conclusions fit to experimental data well when the loading velocity is low, which are extended to the high-velocity impact field. The calculations show the plasticity of tungsten under high- velocity impact in qualitative description.