隐私保护已成为个人或组织机构关心的基本问题,七.匿名是目前数据发布环境下实现隐私保护的主要技术之一。鉴于多数缸匿名方法采用泛化和隐匿技术,严重依赖于预先定义的泛化层或属性域上的全序关系,产生很高的信息损失,降低了数据的可用性,提出了一种基于聚类技术的k-匿算法。实验结果表明,该算法在保护隐私的同时,提高了发布数据的可用性。
Privacy preservation has been an essential issue for individuals or organizations.k-anonymity is one of the primary techniques realizing privacy protection in data dissemination environment.Current k-anonymity solutions based on generaliza- tion and suppression techniques suffer from high information loss and low usability mainly due to reliance on pre-defined generalization hierarchies or order imposed on each attribute domain.It develops a new k-anonymity algorithm based on clustering technology.Experimental results show that the method can improve the usability of the released data while preserving privacy.