位置:成果数据库 > 期刊 > 期刊详情页
基于小波分解的日径流逐步回归预测模型
  • ISSN号:0559-9350
  • 期刊名称:《水利学报》
  • 时间:0
  • 分类:P333[天文地球—水文科学;水利工程—水文学及水资源;天文地球—地球物理学]
  • 作者机构:[1]天津大学建筑工程学院,天津300072
  • 相关基金:国家自然科学基金资助项目(50679052)
中文摘要:

本文以预测水文站的上游水文站的日径流序列为依据,利用小波分解和重构得到预测水文站及上游水文站的日径流序列在1-4尺度下的概貌分量,然后以各站的原始径流序列及其在不同尺度下的概貌分量为候选预报因子,建立了径流逐步回归多步预测模型。计算实例表明,由于引入了上游水文站的径流序列并提取了各站径流序列的不同尺度下的概貌分量,本文提出的基于小波分解的日径流逐步回归预测模型的预测精度高于小波网络模型和多元自回归模型,能对非凌汛期未来1~3d以及凌汛期1~7d的日均流量进行预测,可为制定水电站未来的发电计划提供科学的依据。

英文摘要:

A stepwise regression model for runoff prediction based on wavelet decomposition is proposed The daily runoff time series of the hydrological stations in the upstream of the hydrological stations under consideration are introduced into the model. The general components of the daily runoff time series of both hydrological stations at timescale 1 -4 can be obtained by using the wavelet decomposition and reconstruction. Taking the original daily runoff time series and their general components as candidate independent variables, the stepwise regression models for daily runoff multi-step prediction can be established. A case study shows that the p model is better than the auto-regression model, and is able to predict the daily runoff in 1 - 3 days during non ice-jam period and 1 - 7 days during ice-jam period with acceptable accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《水利学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国水利学会 中国大坝工程学会
  • 主编:程晓陶
  • 地址:北京市复兴路甲1号中国水科院A座1117室
  • 邮编:100038
  • 邮箱:slxb@iwhr.com
  • 电话:010-68786221
  • 国际标准刊号:ISSN:0559-9350
  • 国内统一刊号:ISSN:11-1882/TV
  • 邮发代号:2-183
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43715