位置:成果数据库 > 期刊 > 期刊详情页
基于多重特征向量的有向网络社团结构划分算法
  • ISSN号:1001-0548
  • 期刊名称:《电子科技大学学报》
  • 时间:0
  • 分类:N949[自然科学总论—系统科学]
  • 作者机构:[1]上海理工大学复杂系统科学研究中心上海杨浦区200093, [2]上海财经大学科研实验中心上海杨浦区200433
  • 相关基金:国家自然科学基金(71371125,61374177,71271036,71271126);上海市自然科学基金(14ZR1427800);上海市东方学者特聘教授项目;上海市曙光学者项目(14SG42)
中文摘要:

有向网络社团结构的识别对于理解复杂系统的结构特性和动力学特性都有着重要的意义。提出了一种基于拉普拉斯矩阵多重特征向量的有向网络社团结构划分算法,该算法利用有向网络拉普拉斯矩阵的前c个较小特征值所对应的特征向量来划分有向网络的社团结构。在人工数据和实证数据上与模块度的谱优化算法和模拟退火算法做了对比实验。实验结果表明,当社团结构明显时,该算法的归一化互信息指标的值接近于1。当社团结构不明显时,该算法所取得的效果也优于谱优化和模拟退火算法。与这两种算法相比,在实证网络上模块度Q值也可以提高17.28%和19.21%。该文工作对于理解有向网络上拉普拉斯矩阵的多重特征向量与网络的社团结构的关系具有十分重要的意义。

英文摘要:

Detecting community structure of directed networks is of significance for understanding the structures and functions of complex systems. In this paper, we develop a spectral algorithm using multiple eigenvectors of the Laplacian matrix (MEL) in directed networks, where the c eigenvectors of the smallest eigenvalues of the Laplacian matrix are taken into account. We compare with the spectral optimization method (SOM) and simulated annealing (SA) algorithm of modularity matrix in directed networks on synthetic and empirical networks. The experimental results indicate that, the values of the normalized mutual information (NMI) obtained by our algorithm are approximated 1 when the community structures are clearly. The proposed algorithm outperforms the SOM and SA algorithms when the community structures are not clearly. In addition, the numerical results for empirical data set show that the modularity values Q could be enhanced by 17.28% and 19.21% respectively. This work may be helpful to analyze the relationship between the properties of Laplacian matrix and community structures in directed networks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子科技大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:国家教育部
  • 主办单位:电子科技大学
  • 主编:周小佳
  • 地址:成都市成华区建设北路二段四号
  • 邮编:610054
  • 邮箱:xuebao@uestc.edu.cn
  • 电话:028-83202308
  • 国际标准刊号:ISSN:1001-0548
  • 国内统一刊号:ISSN:51-1207/T
  • 邮发代号:62-34
  • 获奖情况:
  • 全国优秀科技期刊,第二届全国优秀科技期刊二等奖,两次获国家新闻出版署、国家教委“全国高校自然科...,中国期刊方阵双百期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12314