针对产品的异质性没有在推荐算法中得到很好利用的问题,提出一种考虑产品流行度对用户兴趣偏好影响的物质扩散算法。通过模拟物质在用户-产品二部分网络上的扩散过程,并且引入产品流行度的可调参数,对产品流行度的影响进行定量刻画。在三个真实数据集上进行数值实验结果表明,该算法与经典的物质扩散算法相比,MovieLens、Netflix和Last.FM数据集上的平均排序打分可以分别提高25.60%、10.96%和1.2%;推荐列表多样性分别提高59.30%、53.07%和8.59%。所提出的非平衡的物质扩散算法所得到的结果更切合实际。
In order to solve the problem of not using the product heterogeneity well in recommendation algorithm, a modified mass diffusion algorithm was presented by considering the effect of the object popularity information on the user preference prediction. By introducing a tunable parameter of product popularity and simulating the mass diffusion process on the user-product bipartite network, the effect of the product popularity was quantitatively characterized. The experimental results on three empirical data sets which named Movie Lens, Netflix and Last. FM show that, compared with the traditional mass diffusion method, the proposed algorithm can enhance the average ranking score by 25. 6%, 10. 96% and 1. 2%respectively, and increase the diversity of the recommendation lists by 59. 30%, 53. 07% and 8. 59% respectively. The proposed non-equilibrium mass diffusion algorithm can get more practical results.