利用分担值的思想证明了:设n(n≥3),a(≠0)、b是两个有穷复数。D是复平面C的一个区域。F是区域D中的一族亚纯函数,其中每个函数极点的重级至少是3,零点的重级至少是2.若对于F中的任意两个函数f、g,f′-af^n与g′-ag^n在D内分担b,则F在D内正规.
The results are proved as follow by used the idea of shared value: a family Fof meromorphic functions, all of whose poles have multiplicity at least 3 and all of whose zeros have multiplicity at least 2 in a domain D , is normal, if for each pair of functions f and g in F , f′-af^n and g′-ag^nshare a value binD, where n(≥3) is a positive integers and a(≠0),b are 2 finite constants.