纵的张力的性质原文如此 有不同纤维体积部分的 f /Ti-6Al-4V composites 被蒙特卡罗 2-D 模仿有限元素模型。纤维力量的随机的分发被二参数的 Weibull 功能表示。同时,接触元素和出生死亡元素被用来在 debonding 和纤维破裂以后描述界面的滑动过程(或矩阵裂开) 分别地,它被子程序认识到在 ANSYS-APDL (ANSYS 参量的设计语言) 应允了。试验性的结果证明收益应力和最终的张力的强度原文如此 有增加的 f /Ti-6Al-4V composites 增加纤维体积部分,当他们的相应紧张只是时相反。另外,几乎,一样的失败模式被获得在原文如此 有各种各样的纤维体积部分的 f /Ti-6Al-4V composites 什么时候界面砍力量被修理。最后,张力的力量由有限元素预言了分析与由全球分享负担的模型,预言了那相比本地人分享负担的模型和混合物的常规统治,因此画结论那个本地分享负担的模型为最终的张力的力量的预言是很完美的。
The longitudinal tensile properties of SiCf/Ti-6Al-4V composites with different fiber volume fractions were simulated by the Monte Carlo 2-D finite element model. The random distribution of fiber strength was expressed by the two-parameter Weibull function. Meanwhile, contact elements and birth-death elements were used to describe the interfacial sliding process after debonding and fiber breakage(or matrix cracking) respectively, which was realized by subroutine complied in ANSYS-APDL(ANSYS Parametric Design Language). The experimental results show that the yield stress and ultimate tensile strength of SiCf/Ti-6Al-4V composites increase with increasing fiber volume fraction, while the corresponding strain of them is just on the contrary. In addition, almost the same failure mode is obtained in SiCf/Ti-6Al-4V composites with various fiber volume fractions when the interfacial shear strength is fixed. Finally, the tensile strength predicted by finite element analysis is compared with that predicted by Global load-sharing model, Local load-sharing model and conventional rule of mixtures, thus drawing the conclusion that Local load-sharing model is very perfect for the prediction of the ultimate tensile strength.