位置:成果数据库 > 期刊 > 期刊详情页
青藏高原阶段性隆升对亚洲干旱半干旱区冬季粉尘循环的影响
  • 时间:0
  • 分类:P458.121[天文地球—大气科学及气象学]
  • 作者机构:[1]中国科学院地球环境研究所黄土与第四纪地质国家重点实验室,西安710061, [2]中国科学院青藏高原地球科学卓越创新中心,北京100101
  • 相关基金:中国科学院战略性先导科技专项(XDB03020601);国家自然科学基金项目(41472162,41290255)
作者: 李新周[1,2]
中文摘要:

粉尘是大气气溶胶的主要成分之一,对大气能量平衡起着关键作用。一般来讲,黄土高原(LP)粉尘主要来源于北方沙漠区,但有关中国东部及其周边地区粉尘来源的争论仍在继续。为此,本文对比分析了亚洲主要粉尘源区如中亚(CA)和中蒙(CM)粉尘循环对青藏高原阶段性隆升的响应,探讨了CA和CM粉尘排放对下游的贡献。利用美国大气研究中心(NCAR)最新发布的通用地球系统模式(CESM1.0),进行了改变青藏高原海拔高度为现在10%,20%,30%…100%的9个数值试验。分析结果表明,随着青藏高原阶段性隆升中亚和中蒙干旱区冬季降水均线性减弱,与前人研究结果一致。青藏高原阶段性隆升阻塞西风环流使其减弱从而引起中亚粉尘释放减弱;而青藏高原阶段性隆升引起亚洲冬季风加强,促使中蒙粉尘释放加强,与中亚相反。模拟结果与地质记录对比进一步证实了中蒙粉尘源区对黄土高原、中国东部及临近区域粉尘沉降的贡献。

英文摘要:

Background, aim, and scope Mineral dust as one of the major atmospheric aerosols plays a role in the atmospheric energy balance. Chinese Loess is most extensive, continuous, and deepest dust deposit of the world. It recorded historical evolution of Asian monsoon and drought history was back to 22 --25 Ma ago. Many scholars in China and abroad have analyzed the long-term evolution of the Asian monsoon and dryness of Asian inlands, using geologic records from loess, lake, desert, ice core, bios and ocean during the last several decades. While it is now generally believed that the dust source of Chinese Loess Plateau (LP) is deserts in northern China and Mongolia (CM), the source for the dust deposit in eastern China and neighboring seas are still in debate. In this paper, the responses of dust cycles over the Asian two key dust source areas such as central Asia (CA) and CM to Tibetan Plateau (TP)progressive uplift are analyzed and discussed. Materials and methods As an important driving force in the global climate and environmental changes on geological time scales, the TP uplift was one of the most significant tectonic events in Cenozoic era. Particularly, the TP uplift traced back to 50 Ma BP had profound influences on the Asian monsoon and arid central Asia. Using the Community Earth System Model version 1.0 (CESM 1.0) newly released by the National Center for Atmospheric Research, we conducted nine numerical experiments where the elevation of TP is decreased to 10%, 20%, 30%... 100%, respectively. The results of experiments are compared with the reconstructed geologic records of light eolian dust mass accumulation rate (MAR) from marine sediments from ODP 885/886, dust accumulation rate (DAR) from the Qinan loess section in the LP. Results The results show that the annual (winter) precipitation decreases about linearly with increasing TP altitude from 320 (125) mm in TP2 to 230 (90) mm in TP10 in CA. The winter precipitation also displays a linear decrease with TP rising

同期刊论文项目
同项目期刊论文