【目的】改进染色体片段代换系群体,挖掘野生大豆(Glycine soja Sieb. et Zucc.)中蕴藏的农艺性状优异等位变异,为拓宽栽培大豆(Glycine max (L.) Merr.)的遗传基础提供材料和依据。【方法】通过标记加密和剔除部分单标记型片段的方法,改进以野生大豆 N24852为供体,栽培大豆 NN1138-2为受体的染色体片段代换系(CSSL)群体 SojaCSSLP1;对改进后的群体(SojaCSSLP2)进行3年2点田间试验,通过单标记分析、区间作图、完备复合区间作图和基于混合线性模型的复合区间作图等4种定位方法,结合与轮回亲本有显著差异的染色体片段代换系间相互比对,检测与大豆开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的野生片段。【结果】改进后的群体(SojaCSSLP2)由150个 CSSL 构成,其中,有130个家系与 SojaCSSLP1相同;在原遗传图谱上,新增40个 SSR 标记,相邻标记间平均遗传距离由16.15 cM 变为12.91 cM,大于20 cM的区段由32个减少至17个,标记覆盖遗传距离总长度较原图谱(2063.04 cM)增加103.52 cM;群体 NN1138-2背景回复率变幅为79.45%—99.70%,平均为94.62%。利用 SojaCSSLP2群体,分别鉴定到与开花期、株高、主茎节数、单株荚数、百粒重和单株粒重相关的4、5、5、7、14和3个工作 QTL(working QTL)/片段,其中有15个工作 QTL/片段能在多个环境下检测到,属共性工作 QTL(joint working QTL);除片段 Sct_190—Sat_293上的主茎节数位点外,野生等位变异具有的加性效应方向与双亲表型差异方向一致;单个位点分别能解释5%—64%的表型变异;同时,分别检测到3、2和2个与地点存在互作的株高、主茎节数和单株荚数 QTL/片段,其中与凤阳环境的互作均具有增加表型的效应,这可能与凤阳较南京所处纬度高有关;这些位点/片段分布在26个染色体片段上,其中有7个片?
Objective] The present study was aimed to take a first step of the improvement of the previously reported chromosome segment substitution line (CSSL) population SojaCSSLP1, and to explore superior QTL/gene-alleles related to some agronomic traits from the wild parent (Glycine soja Sieb. et Zucc.) for broadening the genetic basis of cultivated soybean (Glycine max (L.) Merr.). [Method] The SojaCSSLP1, with the wild soybean N24852 as donor parent and the cultivated soybean NN1138-2 as recurrent parent, was treated with adding markers and removing a number of lines with segment of single marker, the new population was designated as SojaCSSLP2. By using the new population, the QTL/segments for flowering time (FT), plant height (PH), node number (NN), pod number per plant (PN), 100-seed weight (100SW) and seed weight per plant (PSW) were detected through joint comparisons among CSSLs significantly different from the recurrent parent based on QTL mapping with the methods of single marker analysis (SMA), interval mapping (IM), inclusive composite interval mapping (ICIM) and mixed linear composite interval mapping (MCIM), for experiments in three years each with two locations. [Result]SojaCSSLP2 was composed of 150 CSSLs, of which 130 ones were the same as SojaCSSLP1, added 40 new SSR markers into the previous molecular map, resulted in the average genetic distance and the number of lines with genetic distance more than 30 cM between adjacent markers reduced from 16.15 cM and 32 to 12.91 cM and 17, respectively. The total length of the genetic map increased by 103.52 cM in comparison to the original map (2 063.04 cM). The genome component of NN1138-2 in CSSLs ranged from 79.45% to 99.70% with an average of 94.62% in SojaCSSLP2. Tested in three years and two locations, 4, 5, 5, 7, 14 and 3 working QTL/segments were identified for FT, PH, NN, PN, 100SW and PSW, respectively, with the improved population. Of those, 15 QTL/segments were joint working QTL which could