This paper is devoted to study direct and converse approximation theorems of the generalized Bernstein operators Cn( f,sn,x) via so-called unified modulus ω2φλ( f,t), 0 ≤λ≤1. We obtain main results as follows ω2φλ( f,t) =O(tα)|Cn( f,sn,x)- f(x)| =O(n-12 δ1-λn(x))α,where δ2n(x) =max{φ2(x),1/n} and 0 < α <2.
This paper is devoted to study direct and converse approximation theorems of the generalized Bemstein operators Cn (f, sn,x) via so-called unified modulus ωφλ^2 (f,t), 0 ≤ λ ≤1. We obtain main results as follows ωφλ^2 (f,t)=O(t^α)←→|Cn(f,sn,x)-f(x)|=O((n^-1/2δn^1-λ(x))^α), where δn^2(x)=max{φ^2(x),1/n} and 0〈α〈2.