Hv(Sn)为定义在Laurent整环Z[u,v^-1]上的对称群Sn上的Iwahori-Hecke代数,构造Kazhdan-lusztig胞腔模和Murphy的对偶Specht模之间的同构,并且证明在适当的顺序下胞腔模的Kazhdan-Lusztig基和对偶Specht模的标准基之间的过渡矩阵是对角元为1的三角阵.这推广了Naruse的结果.给出了一个关于基过渡矩阵元素的正定性的猜想,并列举了一些支持猜想的例子.
Let Hv (Sn) be the Hecke algebra associated to the symmetric group S, and difined over Z[v,v^-1 ]. The explicit isomorphism between the Kazhdan-Lusztig's cell representations and the Murphy's dual Specht representations is constructed. Under suitable ordering, the base change matrices between the KazhdanLusztig bases for cell modules and the standard bases for dual Specht modules are always unitriangular. This generalizes an earlier result of H. Naruse. A conjecture (and some supporting examples) on the positivity of the off-diagonal entries on these base change matrices is also given.