主要给出关于Dedekind整环的两个经典结果在Krull整环上的体现.利用w-算子理论,证明了若R是Krull整环,A、B是R的非零理想,则AwBwR(AB)w·进一步地,结合模的外幂的相关结果,证明了若R是Krull整环,I1,…,Im、J1,…,Jn是R的非零理想,则(I1)w…(Im)w(J1)w…(Jn)w当且仅当m=n,且存在x∈K-0,使得(I1…In)w=x(J1…Jn)w.
In this paper,we aim to display the Krull analogues of two well-known results for Dedekind domains.By utilizing w-operation theory,we show that if R is a Krull domain and A,B are nonzero ideals of R,then Aw Bw R(AB)w.Further,by combining the correlative results about exterior power of modules,we prove that if R is a Krull domain and I1,…,Im,and J1,…,Jn are nonzero ideals of R,then(I1)w…(Im)w(J1)w…(Jn)w if and only if m=n,and there exists an element x∈K-0 such that(I1… In)w=x(J1… Jn)w.