位置:成果数据库 > 期刊 > 期刊详情页
参数优化的组合形态-hat变换及其在风力发电机组故障诊断中的应用
  • ISSN号:0577-6686
  • 期刊名称:《机械工程学报》
  • 时间:0
  • 分类:TH17[机械工程—机械制造及自动化]
  • 作者机构:东南大学机械工程学院,南京211189
  • 相关基金:国家自然科学基金(51075070);高等学校博士学科点专项科研基金(20130092110003)资助项目
中文摘要:

开闭-闭开组合形态滤波(Combination morphological filter,CMF)可以有效剔除振动信号中的脉冲干扰,顶帽(Top-hat,TH)变换充分反映出信号周期性的冲击特征,借鉴此两种形态算子的理论思想,提出一种新的数学形态算子——组合形态-hat变换。为准确描述形态学算子在振动检测应用中的理论依据,通过非线性滤波器频响特性的分析方法考察形态学算子的滤波性质。此外,针对数学形态算子中结构元素的尺度按经验选择的问题,采用粒子群优化算法(Particle swarm optimization,PSO)对组合形态-hat变换的结构元素尺度进行参数优化,提高数学形态算子在振动信号处理中的精确度。通过仿真信号和实测风力发电机组振动信号的分析结果表明,参数优化的组合形态-hat变换在抑制背景噪声和提取冲击特征方面具备优良的性能,并能够准确高效地识别出风力发电机组齿轮箱高速轴齿轮的磨损故障,具有一定的实际工程应用价值。

英文摘要:

Combination morphological filter(CMF) can effectively reject the impulse interference of vibration signal, and the result of top-hat transform can adequately reveal the periodical impact features. Based on the theory of the above two operators, a novel mathematical morphology operator named the combination morphological filter-hat transform is proposed. To accurately describe the theory basis of morphological operator in vibration detection applications, the filtering properties of morphological operators is investigated by using the analysis method of nonlinear filter frequency response characteristics. Furthermore, in view of the empirical selection of the structuring element of mathematical morphology operator, particle swarm optimization(PSO) is applied to obtain the optimal structure element of CMF-hat and improve the accuracy of mathematical morphology operator in vibration signal process. The simulation signal and practical vibration data generated from wind turbine demonstrate that the proposed method has excellent performance to eliminate the background noise and extract the impact feature, and can precisely diagnose the gear wear defect on high-speed axis of wind turbine gearbox. Therefore, it has certain practical engineering application value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《机械工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国机械工程学会
  • 主编:宋天虎
  • 地址:北京百万庄大街22号
  • 邮编:100037
  • 邮箱:bianbo@cjmenet.com
  • 电话:010-88379907
  • 国际标准刊号:ISSN:0577-6686
  • 国内统一刊号:ISSN:11-2187/TH
  • 邮发代号:2-362
  • 获奖情况:
  • 中国期刊奖,“中国期刊方阵”双高期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:58603