利用2003-2012年兰州市月均空气污染指数API和季节性时间序列模型SARIMA,对数据序列进行拟合并对其变化趋势进行了分析,研究其演变趋势并选取空气质量良好(月平均API【150)的月份(2012年6月2013年2月),选用时间序列模型ARIMA(1,1,1)进行拟合,再结合残差控制图,对2013年3月日平均API预测监控。结果表明,SARIM A(0,1,1)×(0,1,1)12模型较好的拟合了近10年兰州市API的变化趋势,兰州市的空气污染大致呈冬、春季污染相对较重,夏、秋季相对较轻,空气质量总体在逐渐好转。适合该地区短时间尺度的时间序列模型是ARIMA(1,1,1),结合残差控制图对2013年3月API进行预测监控,结果显示6,9,10,11,12和13日超出控制限,对6日和9日提出预警。预测结果与实际结果相吻合,证实了将时间序列模型与残差控制图结合预测监控大气污染的有效性。