位置:成果数据库 > 期刊 > 期刊详情页
Isomap的最优嵌入维数的估计算法
  • ISSN号:1004-731X
  • 期刊名称:《系统仿真学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科技大学数学与系统科学系,长沙410073
  • 相关基金:国家自然科学基金(60673090) 致谢:感谢审稿人的细心评阅和中肯意见,是他们的努力使本文的工作更臻完善.
中文摘要:

等距特征映射(Isomap)是一种新颖、高效的非线性降维技术,它的一个突出优点是只有两个参数需要设定,即邻域参数和嵌入维数。我们提出了一种新的估计Isomap的最优嵌入维数的算法,该算法使用执行Isomap过程本身所产生的数据来估计流形的最优嵌入维数,同时能确定邻域参数的最优值。通过与常用的残差估计方法的实例对比,说明这种算法对人造数据集和真实数据集都很有效,而且能更加合理、更加客观地估计出流形的最优嵌入维数。

英文摘要:

The isometric feature mapping (Isomap) algorithm is a novel and powerful technique for nonlinear dimensionality reduction, one of hers prominent advantages is only two parameters need to be set, i.e. the parameter of neighborhood and the embedding dimension. A new algorithm for estimating the optimal embedding dimension of Isomap was proposed. It used the data produced by performing Isomap itself to estimate the manifold’s optimal embedding dimension and it could also obtain the optimal value of the parameter of neighborhood. Experiments show that this algorithm is more reasonable and objective than residual variance technique and is effective to both artificial data and real-word data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统仿真学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:北京仿真中心 中国仿真学会
  • 主编:李伯虎
  • 地址:北京市海淀区永定路50号院
  • 邮编:100039
  • 邮箱:simu-xb@vip.sina.com
  • 电话:010-88527147
  • 国际标准刊号:ISSN:1004-731X
  • 国内统一刊号:ISSN:11-3092/V
  • 邮发代号:82-9
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:51729