位置:成果数据库 > 期刊 > 期刊详情页
基于模糊聚类的PWA系统的模型辨识
  • ISSN号:0254-4156
  • 期刊名称:《自动化学报》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]上海交通大学自动化研究所,上海200240, [2]江苏大学电气信息工程学院,镇江212013
  • 相关基金:国家自然科学基金(60474051),国家教育部新世纪优秀人才计划资助.
中文摘要:

针对一类分段仿射结构的离散时间混杂系统,其模型辨识可等价成对系统数据的分类、分类边界的优化及分类数据的线性回归问题.利用改进的G-K模糊聚类算法,克服聚类迭代过程出现的非数值解问题:以综合性能指标最优确定最佳的子模型个数,从而获得最佳的分类数据:以隶属度为权值,采用加权最小二乘算法提高子模型辨识精度;通过聚类中心最短法则确定两两相邻的子数据集,利用支持向量机思想,构造出一个标准的二次规划问题,得到凸多面体的方程系数.仿真结果验证了该方法的有效性和实用性.

英文摘要:

For a class of discrete-time hybrid system in the piecewise affine form, its model identification problem is equivalent to the problems of classification of the cluster data of the system, the optimized classification of boundary and linear regression. Using improved G-K fuzzy cluster algorithm to solve the numerical problems in iterated processes, the optimal cluster data can be obtained. The number of sub-models can be estimated from multi-performance indexes. In each cluster, the parameters of sub-model are obtained by the weighted least squares method. Two adjacent regions were achieved with the nearest distance among the cluster centers. The boundary hyper-plane can be estimated by using a soft margin support vector machine. Simulation results show good performances of this effective technique.

同期刊论文项目
期刊论文 77 会议论文 18 著作 1
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550