首先对某种带形状参数的二阶分段三角多项式曲线进行讨论,提出以调整控制点为出发点,利用二阶三角Bézier多项式基函数构造出符合要求的分段三角多项式曲线的方法,得到曲线参数的意义乃是对有关控制点进行某种凸组合的结论.然后给出利用独立参数设置的方法,可以使样条曲线中的每段三角多项式曲线形状不仅发生改变而且相互独立,这样就可以得到更为一般的样条曲线形状调整的方法.最后,研究这些参数对相邻接的三角多项式曲线在拼接点处的几何连续性条件,并给出一个具体实例作为参考.
The quadratic trigonometric polynomial curves with a shape parameter are discussed,the curves are made up of adjusting the control point as the starting point and the second order trigonometric Bézier polynomial basis functions,so we can get the significance of the parameter of curve which is the control points for a convex combination.By using the method of setting up the independent parameters,we can make the spline curve of each trigonometric polynomial curve changeable and independent of each other.So we can get a more general method of spline curve shape adjustment.These parameters on the adjacent trigonometric polynomial curves in splicing point geometry continuity conidtions are discussed and an example as a reference is given.