位置:成果数据库 > 期刊 > 期刊详情页
基于改进多目标遗传算法的入侵检测集成方法
  • ISSN号:1000-9825
  • 期刊名称:《软件学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京大学计算机科学与技术系,江苏南京210093, [2]计算机软件新技术国家重点实验室(南京大学),江苏南京210093
  • 相关基金:Supported by the National Natural Science Foundation of China under Grant No.60303023 (国家自然科学基金); the National High-Tech Research and Development Plan of China under Grant No.2003AAI42010 (国家高技术研究发展计划(863)); the High-Tech Research Plan of Jiangsu Province of China under Grant No.BG2004030 (江苏省高技术计划).Acknowledgement 0ur special thanks to Dr. Kalyanmoy Deb at Indian Institute of Technology Kanpur for the provision of the source code of NSGA-Ⅱ algorithm.
中文摘要:

针对现有入侵检测算法中存在着对不同类型攻击检测的不均衡性以及冗余或无用特征导致的检测模型复杂与检测精度下降的问题,提出了一种基于改进多目标遗传算法的入侵检测集成方法.利用改进的多目标遗传算法生成检测率与误报率均衡优化的最优特征子集的集合,并采用选择性集成方法挑选精确的、具有多样性的基分类器构造集成入侵检测模型.实验结果表明,该算法能够有效地解决入侵检测中存在的特征选择问题,并在保证较高检测精度的基础上,对不同类型的攻击检测具有良好的均衡性.

英文摘要:

There exist some issues in current intrusion detection algorithms such as unbalanced detection performance on different types of attacks, and redundant or useless features that will lead to the complexity of detection model and degradation of detection accuracy. This paper presents an ensemble approach to intrusion detection based on improved multi-objective genetic algorithm. The algorithm generates the optimal feature subsets, which achieve the best trade-off between detection rate and false positive rate through an improved MOGA. And the most accurate and diverse base classifiers are selected to constitute the ensemble intrusion detection model by selective ensemble approach. The experimental results show that the algorithm can solve the feature selection problem of intrusion detection effectively. It can also achieve balanced detection performance on different types of attacks while maintaining high detection accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609