以坐标系二次旋转为理论基础研究了PMN-0.33PT晶体三方相的常用压电模量d(15)、d(24)、d(31)、d(33)、d(36)和机电耦合系数k(15)、k(24)、k(31)、k(33)、k(36)在三维空间的变化规律。通过MATLAB编程求得以上各系数关于坐标系旋转角度的函数表达式,绘制出了它们的三维空间分布图,并一一求得这些系数的最大值,以及与最大值相对应的旋转角。发现除d(33)和k33外,d(31)、d(36)、k(31)和k(36)也在空间变化显著。d(31)和k(31)旋转后的最大值比原坐标系下的数值分别扩大了15倍和6倍,对应的旋转角分别为(-4.5°/90°)、(22.5°/270°)。d(36)和k(36)在原坐标系下不存在,经旋转后的最大值可分别达到1340pC/N和0.73。该研究结果对PMN-0.33PT晶体在压电传感器、换能器中的应用具有重要的理论价值。
The distribution in 3D space of the piezoelectric coefficient d(15),d(24),d(31),d(33),d(36) and the electromechanical coupling factor k(15),k(24),k(31),k(33),k(36) of the rhombohedral PMN-0. 33 PT crystal were investigated by rotating the coordinate system twice. The functions of the coefficients and the factors stated above about the coordinate rotation angle were obtained. The 3D figures,the maximum values of these coefficients and the rotation angle corresponding to the maximum value are achieved by MATLAB program.It is found that d(31),d(36),k(31) and k(36) change dramatically in different direction besides d(33) and k(33). The maximum value of d(31) and k(31) of the crystal after rotation expand 15 times and 6 times respectively compared with the measured value of the original coordinates. The maximum value of d(36) and k(36) which are both zero in the original coordinates can reach 1340 pC/N and 0. 73 respectively after rotation. It is instructive for the application of the PMN-0. 33 PT crystal in piezoelectric sensors and transducers.