位置:成果数据库 > 期刊 > 期刊详情页
基于贝叶斯网络的航班保障服务时间动态估计
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国民航大学电子信息与自动化学院,天津300300, [2]中国民航局第二研究所信息技术分公司,成都610041
  • 相关基金:基金项目:国家自然科学基金委员会-中国民用航空局联合研究基金资助项目(U1533203);中央高校基本科研业务费基金资助项目(3122014P003).
中文摘要:

针对航班保障服务时间估计的问题,考虑到航班保障服务流程的特殊性、复杂性以及影响因素的不确定性,提出了一种基于贝叶斯网络(BN)的航班保障服务时间估计模型。该模型把航空领域的专家知识与历史数据的机器学习相结合,使用贝叶斯网络的增量学习特性动态地调整BN模型,使其适应新的变化,进而不断更新航班保障服务时间的估计值。使用国内某大型枢纽机场信息系统内提取的数据,通过期望最大化(EM)方法对模型进行训练,得到了测试结果。实验结果分析与模型评价表明,所提方法能有效估计航班保障服务时间且具有较高的准确度。敏感性分析表明,航班到达时段的航班密度对航班保障服务时间影响最强。

英文摘要:

Concerning the problems of estimating the service time of airport flight support, and the particularity, complexity, and influence factors' uncertainty of flight support service process, an estimation model of flight support service time based on Bayesian Network (BN) was proposed. The knowledge of aviation experts and the machine learning of historical data were combined by the proposed model, and the incremental learning characteristic of BN was used to adjust the BN model dynamically, so as to make itself adapt to new conditions and constantly update the service time estimates of flight support. By using the data selected from a large domestic hub airport information system, the proposed BN model was trained via the Expectation Maximization (EM) algorithm to obtain the test results. The analysis of experimental results and model evaluation show that the proposed method can effectively estimate the service time of flight support and has higher accuracy. In addition, the sensitivity analysis demonstrates that the flight density during flight arrival time has the strongest influence on flight support service time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679