参数型Marcinkiewicz积分算子定义为:μρΩ(f)(x)=∫^∞0|1/tρ∫|x-y|≤t|Ω(x-y)/|x-y|^n-ρf(y)dy|^2dt/t)1/2,其中Ω是零次齐次函数,且在单位球面上平均值为零.对于f∈BMO,证明了当Ω∈L(logL)γ(Sn-1)(γ〉2)以及某类Dini型条件时,[μρΩ(f)]2要么几乎处处无限要么几乎处处有限的,且当[μΩρ(f)]2几乎处处有限时,‖[μ^ρΩ(f)]^2‖BLO(R^n)≤C‖f‖2^BMO(Rn).
Higher-dimensional parameterized Marcinkiewicz integral operator is defined by μρΩ(f)(x)=∫^∞0|1/tρ∫|x-y|≤t|Ω(x-y)/|x-y|^n-ρf(y)dy|^2dt/t)1/2 where Ω is homogeneous function of degree zero,with a mean value of zero on the unit sphere.When f∈BMO,It is proved that [μ^ρΩ(f)]^2 is either infinite everywhere or finite almost everywhere,furthermore if [μ^ρΩ(f)]^2 is finite almost everywhere,‖[μρΩ(f)]^2‖BLO(Rn)≤C‖f‖^2BMO(Rn).