双曲空间是一类更宽泛的度量空间,论文主要通过双曲空间及完全渐近非扩张非自映像的定义,在完备一致凸双曲空间的条件下研究双曲空间中完全渐近非扩张非自映像的收敛性问题,将改进的Ishkawa迭代从Banach空间引入到双曲空间,并结合相关引理和附加条件,给出双曲空间中任意有限个完全渐近非扩张非自映像的Δ-收敛性,从而改进和推广了双曲空间的相应性质。
The hyperbolic spaces covers all normed liner spaces. This paper mainly applied the concept of hyperbolic spaces and total asymptotically nonexpansive nonself mappings,discuss the convergence character of total asymptotically nonexpansive nonself mappings in complete uniformly convex hyperbolic spaces. And translation the Ishkawa iterative from Banach spaces to hyperbolic spaces. Using the relevant lemma and auxiliary conditions,we prove the Δ-convergence character for finite families of total asymptotically nonexpansive nonself mappings in hyperbolicspaces. Our results extend some results in the literature.