F为环R的滤链,M={Mn}n≥0为一个Cohen-Macaulay模M的Hilbert F滤链,我们证明了ei(F,M)≥e0(F,M)-λ(M/M1),并且刻画了等式成立的状况.
Let F be a fhration of ring R and M = {Mn}n≥0 be a Hilbert F-filtration with respect to a Cohen-Macau- lay R-module M. We show that e1 (F,M) ≥e0 (F,M)-λ (M/M1) and characterize the condition that the equality holds.