研究了部分信息下期望消费效用最大的优化问题.利用凸分析理论,非线性滤波和Malliavin导数技术,得到了最优投资-消费策略和代价泛函.对于对数效用函数情形,给出了一个估算信息价值的公式,它是完全信息下和部分信息下所对应的最优代价泛函的差值.
Expected consumption utility maximization problems with partial information are studied in this paper.By convex analysis theory,non-linear filtering and Malliavin derivative tech- niques,optimal portfolio-consumption strategies and cost functionals are obtained.For the special logarithmic utility function,a simple formula to estimate the information value is presented,which is the difference between the optimal cost functionals with full information and partial information, respectively.