位置:成果数据库 > 期刊 > 期刊详情页
改进的小波分解、Fisher脸及几何特征相结合的人脸识别方法
  • ISSN号:0258-7971
  • 期刊名称:云南大学学报(自然科学版)
  • 时间:0
  • 页码:215-219
  • 分类:N55[自然科学总论]
  • 作者机构:[1]云南大学信息学院
  • 相关基金:国家自然科学基金资助项目(10901135);云南省应用基础研究面上项目资助(2008CD081);云南大学中青年骨干教师培养计划资助;昆明市第九批中青年学术和技术带头人及后备人选资助
  • 相关项目:治疗方案评价中的统计推断和算法研究
中文摘要:

数据降维是提高人脸识别效率的关键.对基于gabor小波变换和LDA降维做了改进,经gabor小波降维后,对数据分别沿着2个不同的方向做处理,方向一:继续按LDA方法对数据分类;方向二:进行PCA降维,再进行一些特征向量的提取,提取4个眼角,鼻尖和2个嘴角的数据,这样又降低了数据的维数.然后根据LDA分类后的数据和提取的几何特征点数据在识别过程中所起的不同作用,分配不同的权值,得出人脸识别的结果.经实验对比,该文的方法有更高的识别率.

英文摘要:

数据降维是提高人脸识别效率的关键.对基于gabor小波变换和LDA降维做了改进,经gabor小波降维后,对数据分别沿着2个不同的方向做处理,方向一:继续按LDA方法对数据分类;方向二:进行PCA降维,再进行一些特征向量的提取,提取4个眼角,鼻尖和2个嘴角的数据,这样又降低了数据的维数.然后根据LDA分类后的数据和提取的几何特征点数据在识别过程中所起的不同作用,分配不同的权值,得出人脸识别的结果.经实验对比,该文的方法有更高的识别率.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《云南大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:云南省教育厅
  • 主办单位:云南大学
  • 主编:张力
  • 地址:昆明市呈贡新区
  • 邮编:650500
  • 邮箱:yndxxb@ynu.edu.cn
  • 电话:0871-5033829 5031498 5031662
  • 国际标准刊号:ISSN:0258-7971
  • 国内统一刊号:ISSN:53-1045/N
  • 邮发代号:64-29
  • 获奖情况:
  • 1999年荣获全国优秀高校自然科学学报及教育部优秀...,1997年荣获全国第二届优秀科技期刊评比二等奖,1995年全国重点大学优秀科技期刊评比二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,德国数学文摘,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:11696