数据降维是提高人脸识别效率的关键.对基于gabor小波变换和LDA降维做了改进,经gabor小波降维后,对数据分别沿着2个不同的方向做处理,方向一:继续按LDA方法对数据分类;方向二:进行PCA降维,再进行一些特征向量的提取,提取4个眼角,鼻尖和2个嘴角的数据,这样又降低了数据的维数.然后根据LDA分类后的数据和提取的几何特征点数据在识别过程中所起的不同作用,分配不同的权值,得出人脸识别的结果.经实验对比,该文的方法有更高的识别率.
数据降维是提高人脸识别效率的关键.对基于gabor小波变换和LDA降维做了改进,经gabor小波降维后,对数据分别沿着2个不同的方向做处理,方向一:继续按LDA方法对数据分类;方向二:进行PCA降维,再进行一些特征向量的提取,提取4个眼角,鼻尖和2个嘴角的数据,这样又降低了数据的维数.然后根据LDA分类后的数据和提取的几何特征点数据在识别过程中所起的不同作用,分配不同的权值,得出人脸识别的结果.经实验对比,该文的方法有更高的识别率.