针对信息截获等领域中的卷积码盲识别问题,提出一种高误码(n,k,m)非系统卷积码盲识别算法。首先建立可变的数据矩阵模型,对侦收到的数据进行相关预处理,以减小误码对识别的影响,提高算法的容错性能;再对预处理后的数据矩阵进行统计分析,识别出卷积码的各项参数,并提取各个数据矩阵的校验序列;进而利用校验序列构建线性方程组求解生成多项式矩阵组,通过设定筛选生成多项式矩阵的条件,筛选出非系统卷积码的生成多项式矩阵,最终完成对非系统卷积码的识别。仿真实验表明,该算法可以对高误码(n,k,m)非系统卷积码实现有效的盲识别。
An algorithm for blind recognition of (n, k, m) non-systematic convolutional code with high BER is proposed in information interception. Firstly, an alterable matrix model is constructed to deal with the received data in advance. Then, statistical analysis of the preprocessed data matrixes is carried out to recognize parameters of the convolutional code and extract check-sequences of the each data ma- trix. Linear equation set using check-sequences is built to figure out the generator polynomial matrix group. Through setting condition of selecting the generator polynomial matrix of the non-systematic con- volutional code, the non-systematic convolutional code is recognized. Finally simulation results show that the algorithm can recognize (n, k, m) non-systematic convolutional code effectively in the high BER con- dition.