位置:成果数据库 > 期刊 > 期刊详情页
多孔介质中受限层流冲击射流的流动与换热特性
  • ISSN号:0438-1157
  • 期刊名称:化工学报
  • 时间:2012.7.15
  • 页码:2033-2044
  • 分类:O175.29[理学—数学;理学—基础数学] TU855[建筑科学]
  • 作者机构:[1]Department of Mathematics and Systems Science, College of Science, National University of Defense Technology, Changsha 410073, China, [2]State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nos. 10971226, 91130013, and 11001270), the National Basic Research Program of China (Grant No. 2009CB723802), the Research Innovation Fund of Hunan Province, China (Grant No. CX2011B011), and the Innovation Fund of National University of Defense Technology, China (Grant No. B120205).
  • 相关项目:非结构网格高精度有限体积方法及其在涡轮流/热耦合数值模拟中的应用
中文摘要:

<正>We propose a multi-symplectic wavelet splitting method to solve the strongly coupled nonlinear Schrodinger equations.Based on its multi-symplectic formulation,the strongly coupled nonlinear Schr(o|¨)dinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem.For the linear subsystem,the multi-symplectic wavelet collocation method and the symplectic Buler method are employed in spatial and temporal discretization,respectively.For the nonlinear subsystem,the mid-point symplectic scheme is used.Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.

英文摘要:

We propose a multi-symplectic wavelet splitting equations. Based on its mu]ti-symplectic formulation, method to solve the strongly coupled nonlinear SchrSdinger the strongly coupled nonlinear SchrSdinger equations can be split into one linear multi-symplectic subsystem and one nonlinear infinite-dimensional Hamiltonian subsystem. For the linear subsystem, the multi-symplectic wavelet collocation method and the symplectic Euler method are employed in spatial and temporal discretization, respectively. For the nonlinear subsystem, the mid-point symplectic scheme is used. Numerical simulations show the effectiveness of the proposed method during long-time numerical calculation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《化工学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国化工学会 化学工业出版社
  • 主编:李静海
  • 地址:北京市东城区青年湖南街13号
  • 邮编:100011
  • 邮箱:hgxb126@126.com
  • 电话:010-64519485
  • 国际标准刊号:ISSN:0438-1157
  • 国内统一刊号:ISSN:11-1946/TQ
  • 邮发代号:2-370
  • 获奖情况:
  • 中国科协优秀期刊二等奖,化工部科技进步二等奖,北京全优期刊奖,中国期刊方阵“双效”期刊,第三届中国出版政府奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:35185