位置:成果数据库 > 期刊 > 期刊详情页
基于累积量的DoS攻击检测算法
  • ISSN号:0254-0037
  • 期刊名称:《北京工业大学学报》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:北京工业大学信息学部,北京100124
  • 相关基金:国家自然科学基金资助项目(61602052,61070204)
中文摘要:

针对现有DoS攻击检测算法中检测率较低,检测时间较长的问题,提出一种基于高阶统计量的DoS攻击检测算法.算法分割并量化网络流量数据包,提取累积量特征,将累积量应用到DoS攻击检测中.通过分析1998DARPA入侵检测数据集,该算法能够有效检测DoS攻击.相对于传统基于网络流量熵值的异常检测法,该算法在检测精度上有较大提高,在1 s的时间窗口内,检测率提高了8%.

英文摘要:

To solve the problem of low detection rate and long detection time of the existing DoS attack detection algorithm,a DoS attack detection algorithm was proposed based on higher-order statistics. The network traffic data packets were segmented and quantified in the algorithm. Followed,the characteristics of the accumulation was extracted which was applied to the detection of DoS attacks. By analyzing the 1998 DARPA intrusion detection data set,the algorithm can effectively detect DoS attacks. Compared with the traditional anomaly detection method entropy based on network traffic,the detection accuracy is greatly improved. In the time window of 1 s,the detection rate increases by 8%.

同期刊论文项目
期刊论文 31 会议论文 12 专利 3
同项目期刊论文
期刊信息
  • 《北京工业大学学报》
  • 中国科技核心期刊
  • 主管单位:北京市教委
  • 主办单位:北京工业大学
  • 主编:卢振洋
  • 地址:北京市朝阳区平乐园100号
  • 邮编:100124
  • 邮箱:xuebao@bjut.edu.cn
  • 电话:010-67392535
  • 国际标准刊号:ISSN:0254-0037
  • 国内统一刊号:ISSN:11-2286/T
  • 邮发代号:2-86
  • 获奖情况:
  • 中国高等学校自然科学学报优秀学报二等奖,北京市优秀期刊,华北5省市优秀期刊,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:11924