合金纳米团簇可以充分利用多种金属的协同效应来实现材料的多功能特性,因而备受关注.本文利用改进的Basin-Hopping Monte Carlo算法研究了不同尺寸和不同比例下的Fe-Pt二元合金团簇的结构稳定性.为证明初始结构相关性,引入了相似函数来分析合金团簇稳定结构与其对应的单金属团簇结构之间的相似性,并分析了Fe-Pt合金团簇在稳定结构下的元素分布.研究结果表明:对于N≤24的Fe-Pt含金团簇,其结构并没有随原子数的增长呈现出明显的形状变化.但是就原子分布而言,对于相同尺寸下不同比例的原子结构,Fe元素趋向于分布在外层,而Pt元素更趋向于分布在内层;对于相同比例不同尺寸的原子结构也得到了同样的结论,并且在Fe原子比例越大的情况下,这种趋向的分布越明显.此外,通过计算合金团簇与单一金属团簇的结构相似函数,发现N≤24的Fe-Pt合金团簇在吸收Fe单金属和Pt单金属基态结构的基础上,随着元素比例的变化,发生了不同于单金属基态结构的变化,并且不同比例结构差异较大.最后,通过计算Fe-Pt合金团簇能量的二阶有限差分值,在Fe-Pt表现出分离结构状态时找到了相对稳定度最好的稳定结构.
Alloy nanoclusters have received extensive attention because they can achieve bifunctional properties by making good use of the cooperative effect of two metals.In this paper,an improved Basin-Hopping Monte Carlo(BHMC) algorithm is proposed to investigate the structural stabilities of Fe-Pt alloy nanoclusters.Different cluster sizes and chemical compositions are considered.Moreover,a similarity function is introduced to analyze the structural similarity between the stable structures of alloy clusters and those of their monometallic clusters.Meanwhile,the atomic distributions of Fe-Pt alloy clusters are considered for their stable structures.The results indicate that for Fe-Pt alloy clusters with the size N≤24,there is no significant structural evolution with the increase of cluster size.Fe atoms prefer to segregate at the peripheral positions of the clusters,while Pt atoms tend to occupy the interior.The same distribution result can be obtained for the structures of clusters with different compositions.With Fe composition increasing,this distribution trend is more pronounced for the Fe-Pt alloy clusters.In addition,by calculating the structural similarity function between alloy and monometallic clusters,we find that the stable structures of Fe-Pt alloy clusters gradually vary with composition ratio.Moreover,when the Fe atoms or Pt atoms are added into the Fe-Pt alloy system,they change the stable structures of Fe-Pt alloy clusters,resulting in a different structure from Fe and Pt monometallic ones.Also,the structural similarity is different when the Fe composition varies.Furthermore,the best stable structures of Fe-Pt clusters with different compositions and sizes are obtained by calculating the second-order finite difference in energy of Fe-Pt alloy clusters.