位置:成果数据库 > 期刊 > 期刊详情页
A Note on Sobolev Orthogonality for Laguerre Matrix Polynomials
  • 期刊名称:逼近论及其应用(英文版)
  • 时间:0
  • 页码:26-34
  • 语言:中文
  • 分类:O151.21[理学—数学;理学—基础数学]
  • 作者机构:[1]School of Mathematical Sciences Capital Normal University Beijing, 100037 P. R. China
  • 相关基金:Supported by the National Natural Science Foundation of China (No. 10571122), the Beijing Natural Science Foundation (No.1052006), and the Project of Excellent Young Teachers and the Doctoral Programme Foundation of National Education Ministry of China.
  • 相关项目:关于在反射群下不变测度的调和分析
中文摘要:

让 { L n (一,位)(x)} n ? 0 是定义在上的 monic Laguerre 矩阵多项式的顺序[0,鈭吗?由

英文摘要:

Abstract. Let {L(Ln^(A,λ)(x)}n≥0 be the sequence of monic Laguerre matrix polynomials defined on [0,∞) by Ln^(A,λ)(x)=n!/(-λ)^n ∑nk-0(-λ)^k/k!(n-k)!(A+I)n[(A+I)k]^-1x^k, where A ∈ C^r×r. It is known that {Ln^(A,λ)(x)}n≥0 is orthogonal with respect to a matrix moment functional when A satisfies the spectral condition that Re(z) 〉 -1 for every z E or(a). In this note we show that forA such that σ(A) does not contain negative integers, the Laguerre matrix polynomials Ln^(A,λ)(x) are orthogonal with respect to a non-diagonal SobolevLaguerre matrix moment functional, which extends two cases: the above matrix case and the known scalar case.

同期刊论文项目
同项目期刊论文