位置:成果数据库 > 期刊 > 期刊详情页
基于数据场的大规模本体映射
  • 期刊名称:计算机学报
  • 时间:0
  • 页码:955-965
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]清华大学计算机科学与技术系,北京100084
  • 相关基金:国家自然科学基金(60973102 60703059); 国家“九七三”重点基础研究发展规划项目基金(2007CB310803); 国家“八六三”高技术研究发展计划项目基金(2009AA01Z138)资助
  • 相关项目:大规模动态本体映射模型研究
中文摘要:

针对已有的本体映射方法在处理大规模本体映射任务时效率和有效性较低的问题,文中提出了一个基于数据场的本体映射算法.该算法首先使用高效的相似度算法,建立本体中元素对另一本体的初始相关度;然后,利用数据场势函数引入周围本体元素对当前元素的影响,修正初始相关度,并最终确定本体间的相关子本体;最后,利用针对性的方法对上述相关子本体进行更有效的映射.实验结果表明,该算法可以在提高映射结果质量的同时保证较高的映射效率.

英文摘要:

As the cornerstone of ontology based data integration,data exchange and metadata management,ontology mapping,aiming to obtain semantic correspondences between two ontologies,has attracted wide attentions of researchers in community of the Semantic Web.However when getting the alignments between two large-scale ontologies,the existed mapping methods are not very effective and efficient due to neglecting of relevant sub-ontologies in those two ontologies.For addressing this important issue,in this paper,a data field based ontology mapping approach is proposed to improve the effectiveness and the efficiency of large scale ontology mapping tasks.At first,this approach employs a light weight similarity computing method to collect the initial relevance values between one ontology's elements to another ontology.Then,the potential functions of a data field are taken into account to revise the relevance of an ontology element according to its surroundings.Finally,the relevant sub-ontologies are found and extracted,and a fine-grained alignment approach is used to mapping between the extracted ontologies for better results.The experiments show that the proposed approach is able to effectively deal with the large scale ontology mapping issue with the satisfactory efficiency.

同期刊论文项目
期刊论文 10 会议论文 17 获奖 3 著作 1
同项目期刊论文