In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-identical and nonlinear dynamics. According to the algebraic graph theory, Lyapunov stability theory and Kronecker product, a control strategy strategy is established to guarantee the finite-time consensus of multi-agent network with multiple leaders. Furthermore, several numerical simulations illustrate the effectiveness and feasibility of the proposed method.
In this paper, the finite-time consensus of a leader-following multi-agent network with non-identical nonlinear dynamics and time-varying topologies is investigated. All the agents, especially the leaders, have non-identical and nonlinear dynamics. According to the algebraic graph theory, Lyapunov stability theory and Kronecker product, a control strategy strategy is established to guarantee the finite-time consensus of multi-agent network with multiple leaders. Furthermore, several numerical simulations illustrate the effectiveness and feasibility of the proposed method.