位置:成果数据库 > 期刊 > 期刊详情页
基于核函数的SOM网络流量分类方法
  • ISSN号:1000-7024
  • 期刊名称:《计算机工程与设计》
  • 时间:0
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]桂林电子科技大学计算机科学与工程学院,广西桂林541004, [2]桂林电子科技大学CSIP广西分中心,广西桂林541004, [3]桂林电子科技大学信息与通信学院,广西桂林541004
  • 相关基金:国家自然科学基金项目(60872022); 广西研究生创新基金项目(2010105950812M21)
中文摘要:

由于网络流量数据高度非线性,传统的自组织映射(self-organizing maps,SOM)网络对此分类的鲁棒性和可靠性较差,提出了一种基于核函数的SOM(kernel SOM,KSOM)网络流量分类方法。该方法用核函数代替原始数据在特征空间中映射值的内积,使输入空间中复杂的流量样本结构在特征空间中得到简化,实现对有多个统计特征属性的网络流量在应用层的分类。实验结果表明,KSOM能识别新应用类型的流量,较传统的SOM更适合对网络流量进行分类,其分类准确率高于NB方法。

英文摘要:

Due to network traffic is highly nonlinear,classical self-organizing maps(SOM) is worse robustness and reliability because it adopts Euclidean distance.A network traffic classification method named kernel-SOM(KSOM) is proposed,which adopts kernel function to replace Euclidean distance.This method can simplify the complicated flow sample from input space to feature space,so achieve good classification of network traffic that has several statistic feature attributes in application layer.Experimental results demo-nstrate that KSOM can identify flows which represent new application protocol.This method has more excellent performance than tra-ditional SOM,and achieves higher classify accuracy than NB algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与设计》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团
  • 主办单位:中国航天科工集团二院706所
  • 主编:汤铭瑞
  • 地址:北京142信箱37分箱
  • 邮编:100854
  • 邮箱:ced@china-ced.com
  • 电话:010-68389884
  • 国际标准刊号:ISSN:1000-7024
  • 国内统一刊号:ISSN:11-1775/TP
  • 邮发代号:82-425
  • 获奖情况:
  • 中国科学引文数据库来源期刊,中国学术期刊综合评价数据库来源期刊,中国科技论文统计与分析用期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:45616