位置:成果数据库 > 期刊 > 期刊详情页
基于改进HMM模型的组合服务故障诊断方法
  • ISSN号:1005-3026
  • 期刊名称:《东北大学学报:自然科学版》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学信息科学与工程学院,辽宁沈阳110819
  • 相关基金:国家自然科学基金资助项目(61100028,61272182,61073062,61100027); 新世纪优秀人才支持计划项目(NCET-11-0085); 教育部博士点新教师基金资助项目(20110042120034)
中文摘要:

针对现有组合Web服务诊断模型故障诊断准确率普遍不高的问题,提出一种新颖的基于改进隐马尔可夫模型(Improved-HMM)的故障诊断方法.首先,从组合服务监测数据中提取多维特征序列训练HMM模型.训练过程中,考虑到基于BW的方法仅在某观测条件下进行参数评估,获得的参数准确度不高,提出基于贝叶斯估计的学习方法,得到更客观的参数;进一步,基于改进的HMM模型计算当前特征序列对应的各类故障类型发生概率,推断最有可能的故障类型.实验结果表明,提出的方法具有较高的诊断率和较低的漏报率,适合在网络环境中进行实时故障检测.

英文摘要:

To address the problem that most of the existing composite Web service models are of low accuracy on fault disgnosis, a novel composite Web service oriented fault diagnosis approach was proposed based on an improved hidden Markov model (I-HMM). Firstly, HMM model was trained by using the processed multi-dimensional feature sequences. In this process, the BW-based methods were not used for parameters estimation, since inaccurate parameters would often resulted in due to the single observation. Instead, a Bayes estimation based method to gain more objective paratemeters was proposed. Finally, the probabilities of different fault types caused by the current feature sequence were computed. The one of the maximum probability was inferred as the ultimate fault type. Experimental results showed that the method was effective and efficent. Due to the high diagnostic rate and the low false rate, it was suitable for real-time fault detection in network environment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:汪晋宽
  • 地址:沈阳.南湖
  • 邮编:110819
  • 邮箱:
  • 电话:024-83687378
  • 国际标准刊号:ISSN:1005-3026
  • 国内统一刊号:ISSN:21-1344/T
  • 邮发代号:8-120
  • 获奖情况:
  • 全国优秀科技期刊二等奖,教育部优秀高校自然科学学报一等奖二次,获原冶金部科技期刊质量评比一等奖三次,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23296