位置:成果数据库 > 期刊 > 期刊详情页
An improved predictive deconvolution based on maximization of non-Gaussianity
  • ISSN号:1672-7975
  • 期刊名称:《应用地球物理:英文版》
  • 分类:P631.443[天文地球—地质矿产勘探;天文地球—地质学] O171[理学—数学;理学—基础数学]
  • 作者机构:[1]State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084, China
  • 相关基金:This work is sponsored by National 863 Foundation of China (No. 2006AA09A102-10), National Natural Science Foundation of China (No. 40874056), and NCET Fund. This work is partially sponsored by National 863 Foundation of China (No. 2006AA09A 102-10), National Natural Science Foundation of China (No. 40874056), and NCET Fund. Comments by anonymous reviewers helped to improve the original manuscript.
中文摘要:

预兆的 deconvolution 算法(PD ) 基于秒顺序统计,假设 primaries 和 multiples 是含蓄地直角的。然而,地震数据通常不在实践满足这个假设。自从地震数据(primaries 和 multiples ) ,有 non-Gaussian 分布,在这篇论文我们在场由最大化恢复 primaries 的 non-Gaussianity 的一个改进预兆的 deconvolution 算法(IPD ) 。合成、真实的地震数据集上的 IPD 方法的应用证明建议方法获得有希望的结果。

英文摘要:

The predictive deconvolution algorithm (PD), which is based on second-order statistics, assumes that the primaries and the multiples are implicitly orthogonal. However, the seismic data usually do not satisfy this assumption in practice. Since the seismic data (primaries and multiples) have a non-Gaussian distribution, in this paper we present an improved predictive deconvolution algorithm (IPD) by maximizing the non-Gaussianity of the recovered primaries. Applications of the IPD method on synthetic and real seismic datasets show that the proposed method obtains promising results.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《应用地球物理:英文版》
  • 主管单位:中国科协
  • 主办单位:中国地球物理学会
  • 主编:范伟粹
  • 地址:北京和平里邮局76号信箱
  • 邮编:100013
  • 邮箱:cgsbull@china.com
  • 电话:010-84288401 64266649
  • 国际标准刊号:ISSN:1672-7975
  • 国内统一刊号:ISSN:11-5212/O
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国地质文献预评数据库,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库,美国石油文摘
  • 被引量:150