目的:探索简便、高效、精确的构建基于真实人体解剖形态结构的Stanford B型主动脉夹层计算流体力学数值模拟分析模型的方法。方法:利用Siemens Sensation Cardiac64层螺旋CT薄层扫描技术,基于1mm层厚获取6例Stanford B型主动脉夹层连续断层DICOM格式图像,导入Materialise MIMICS v12.11软件,界定目标区域后生成三维动脉模型,经网格优化处理去除低质量及相交面网格,保存结果输出,导入TGrid5.0软件,对主动脉面网格模型进行几何修复,使面网格扭曲率〈0.75,采用自由分网方式生成Stanford B型主动脉夹层计算流体力学分析体网格模型,并对所构建模型进行血流属性、流场边界等界定,初步验证模型的有效性。结果:通过初步计算求解,确定所构建的6例Stanford B型主动脉夹层计算流体力学分析模型分别包含1857030,1820501,1844181,1849651,1858246及1814914个四面体单元。结论:利用64层螺旋CT薄层扫描技术获取DICOM格式连续断层CT图像可快速、准确地构建Stanford B型主动脉夹层计算流体力学数值模拟分析模型,为进一步的计算流体力学分析奠定了良好的基础。
Objective:To investigate an efficient way to perform the computational fluid dynamics simulation of the aortic dissections with different geometries.Methods:The computered tomography angiography (CTA) scanning images of six patients with different geometries of type B aortic dissections were obtained to generate 3-dimentional surface models, based on which the tetrahedral meshes were finally created.The generated models were tested for mesh-independent solutions under preliminary predefined inlet/outlet loads and fluid properties.Results:The six final patients specific models of Stanford type B aortic dissections contain 1857030, 1820501, 1844181, 1849651, 1856246 and 1814914 tetrahedrons, respectively, with the length ranging from 427 to 523 mm.Conclusions:The accuracy of the models was highly consistent with the real anatomy.This would pave the way for the clinical application of computational fluid dynamics simulation in vascular diseases in the future work.